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THE POSTPROCESSING TECHNIQUE IN THE FINITE ELEMENT METHOD.
THE THEORY AND EXPERIENCE

I. Babuskal

University of Maryland, College Park, Maryland, U.S.A.

K. Izadpanah
2

B. Szabo
2

Washington University, St. Louis, Missouri, U.S.A.

The paper addresses the h, p, and h-p versions
* of the finite element method in connection with a

postprocessing technique for extracting the values
of a functional. This technique combines the
finite element method with the analytical ideas of
the theory of partial differential equations of

2 elliptic type.

I. INTRODUCTION KS
Finite element computations in structural mechanics usually
have two purposes: (1) to determine the stress and
displacement fields and (2) to determine the values of certain
functionals defined on displacement fields as, for example, the
stress intensity factors, stresses at specific points,
reactions, etc. Computations of these values involve the
finite element solution. For example, the stress components
are often computed at the Gauss points of the elements and the
stresses at any other points are then computed by the
interpolation technique, the stress intensity factors is
determined by the J-integral or curve fitting technique,
etc. We shall refer to these operations as postprocessing.1' Usually the values of these functionals are needed to be known
with higher accuracy and reliability than the displacement or
stress field itself.

IPartially supported by the Office of Naval Research under
grant number NOOO14-77-C-0623.

2 partially supported by the Office of Naval Research under
grant number N00014-81-K-0625.
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Assuming that we have the finite element solution and wish to
determine certain functional values the following questions
arise:

1) What should the relationship be between the computa-
tional effort spent on the finite element solution and the
effort spent on postprocessing: Is it better to use a very
simple and inexpensive postprocessing technique as for example
direct evaluation of the stresses from the finite element
solution in the desired points or should one select a more
expensive technique. Of course we have to relate the answer to
the achieved accuracy and to the reliability and robustness of
the postprocessing procedures under consideration.

2) Given a finite element solution, what is the largest
accuracy of the functional values one can achieve by the
postprocessing technique. In other words, what is the maximal
information contained in the finite element solution which
could be used for the extraction of the desired value.

3) How do the various versions of the finite element
method, i.e., the h-version, the p-version and the h-p
version bear on the importance of proper selection of the
postprocessing techniques.

These questions are discussed in some details.

2. THE EXTENSION OPERATORS. THE h, p AND h-p VERSIONS O
THE FINITE ELEMENT METHOD

There are three versions of the finite element methods based on
the common variational (energy) principle. They are charac-
terized by the systematic selection (extension) of the finite
element spaces leading to the convergence of the finite element
solutions to the exact one.

The h-version is the classical and most commonly used method of
extension: the polynomial degree of elements p is fixed and
mesh refinement is used for controlling the error of approxi-
mation (h refers to the size of the element). Typically the
polynomial degree of elements is low, usually p = I or 2.
Proper selection of the mesh and its refinement strongly
influences the error and its dependence on the computational
effort.

In the p-version the mesh is fixed and the polynomial degree of
elements is increased either uniformly or selectively over the
mesh.

The h-p version combines the h and p-versions, i.e., error
reduction is achieved by a proper mesh refinement and con-
current changes in the distribution of the polynomial degree of
elements.

The performance of the various extension operators can be
compared from various points of view, the most important of
which are human and computer resource requirements in relation
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to the desired level of precision. Such relationships are
difficult to quantify and are subject due to various factors,
therefore the performance of the extension operators is usually
related to the number of degrees of freedom N. Of course
evaluation of an extension operator would not be meaningful
without considering the goals of computation. For example, if
only stress intensity factors are desired, then the accuracy of
the computed displacements, reactions or stresses are not of
importance. In many cases the computation has multiple goals.

3. THE MODEL PROBLEM

In order to illustrate the essential properties of finite
element solution and
extraction techniques, we

x1 have selected a model
problem which represents
some of key features of a

large class of engineering
problems. Specifically let

x2 . us consider the plane

strain problem of two-
dimensional elasticity
(homogeneous isotropic
material) with E and v
representing the modulus of
elasticity and Poisson
ratio respectively (E > 0,
0 4 v < .5). The domain

Figure I D, a square panel with a
The model problem crack, is shown in Fig. 1.

We shall be concerned here with problems in which only
tractions are prescribed at the boundary (i.e., first boundary
value problem of elasticity).

We denote the displacement vector function by u = 1 u 2 )
and the corresponding stress tensor by -

'III " 1 2

T = 2 = 21
T 2 1  T 22

The strain energy functional is

W(u) = f- I [(1-,)(a1); + 2v -xl 3x2
D2(-2v)(v) D3X ax 2

au 2 2 1-2v au, 'u2 2]dx d x ( )
+ (i-v)(T-) 2 + 2 (x ax j. 2 d 1 dx 2  (31• ,. ,. •2
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The solution u satisfies the Navier-Lame equations. It is
possible to express the solution through two holomorphic
functions #(z), *(z) using the theory of Muskhelishvili [1].

21(u + iu) = Kf(z) - zT'T *-C (3.2)

where

z X + +ix P R
1 2' K 2 ' 3 - 4v (3.3)

and - = x1 - ix2 , resp. *'(z) mean conjugate values to z
and *'(z).

The components of the stress tensor are expressed by Kolosov-
Muskhelishvili formulae

T11 + T22 = 2(f'(z) + -TF) = 4 Re *'(z)

- 2 (0(z) + -F) (3.4)

T 22 -I + 2i- 12 = 2[-i"(z) + *'(z)] --2[F'(z) + f(z)]

(3.5)

where

*(z) = *'(z), W(z) = *'(z) (3.6)

and Re 0'(z) is the real part of #'(z).

The correspondence' between the displacements (and the stress)
field and the functions * and * is one to one up to the
constants y and y' in * and 4, respectively, satisfying
the relation y - T = 0.

In our model problem we consider the following (exact) solution

O(z) = (1+i)z- 1/2 (3.7)

(z) = O(z) (3.8)
des

(z) = (z) + zI'(z) + V(z) (39)

1140,,. ." ""..
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where O(z)= (

fl(z) is a holomorphic function on D. Punction z-1 /2 is to

be understood as the principal branch of z- /2 on D.
Function T(z) is uniquely defined by (3.9) and (3.7) (3.8).
The tractions on the boundary of D are defined by (3.4)
(3.5). It can be readily verified that the two edges of the
crack are traction free.

We will now discuss the finite element solution and the
postprocessing technique if the tractions are prescribed on the
boundary of D so that the exact solution to the problem is
given by (3.7)-(3.9). Specificaly we now consider the case E
= 1, v = 3. The strain energy of the exact solution is: W =
42.16491240.

4. THE FINITE ELEMENT SOLUTION

We have solved the model problem by the h and p-versions of
the finite element method. The p-version of the finite

A B

Figure 2
The meshes for the p-version, A: Mesh 1, B: Mesh 2

element method was implemented in the experimental computer
program COMET-X developed at the Center for Computational
Mechanics of Washington University in St. Louis [2]. The two
meshes shown in Fig. 2A,B were used. The polynomial degrees
were the same for all elements and ranged from I to 8. The
shape functions on trapezoidal elements of mesh 2 were
constructed by blending function technique.

The h-version solution was obtained by means of the cfmputer
program FEARS developed at the University of Maryland 3, 4].

% % -. .* . ,-. -... . ... • .'. .-.- - .. . . . . . . ..- - . . ..... .. ...
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FEARS uses quadrilateral elements of degree one. The program
is adaptive and produces a sequence of nearly optimal meshes.
See [31 [4] [5] F6] [7]. The mesh from this sequence with 319
elements and number of degrees of freedom N = 617 is shown in
Fig. 3.

'I 1I

Figure 3
The mesh constructed by the adaptive program PEARS

5. ERROR OF THE FINITE ELRMENT SOLUTION MEASURED) IN ENERGY
NORM

We denote the exact solution by LU0 and the finite element

solution by :FE The error of the finite element solution is

denoted by .9,

e.= O -E

We measure the magnitude of the error by the energy norm -.

le[, Me)]12 .(5.1)

* .,. ** *. ~ -. ~* *..*... .*. i: i~ l W: .
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This measure is equivalent to measuring the error in the stress
components by integrals of their squares (the L2  norm). In our
case when tractions are specified at the boundary

W(UFE) W(U 0 ) (5.2)

and

lei ~ W(uPE)j'2(53,eE = [W(u o ) - (9.3)

The extension operators under consideration monotonically
increase the finite element spaces either by increasing the

degree of elements or refining the mesh. Therefore the energy
norm of the error monotonically decreases. We can write

IeEE _ C(N)N-u (5.4)

and expect that for properly chosen p the function C(N) is
nearly constant especially for larger N. The number p > 0
is the rate of convergence of the error measured in the energy
norm.

It is possible to estimate the value of u. In our case the
rate p is governed by the strength of the singularity of the
solution. It can be shown that for the p-version [8],[9]

lei E 4C(e)N- ( 12 - 0)  (5.5)

with c > 0 arbitrarily small and C independent of N.
The h-version using the uniform mesh yields the estimate

lei E CN- 14  (5.6)

with the rate independent of the degree of elements. The
optimal refinement of the mesh leads to the estimate

Eel E CN- p / 2  (5.7)le E

(FEARS uses p = 1) where the rate is independent of the
strength of the singularity.

The h-p versioq with optimal mesh and p-distribution leads to
the estimate

lei E Ce -yN

%; V *,-'' ' *.-.¢ ;.- :¢. .* .,;r .;., . .;..:.;..,.---. .-- . .- . .. .. . .... •
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where 6 = 1/3 independently of the strength of the
singularity and y > 0.

The relative error in the energy norm defined as

leli
e,R (5.8)

has been plotted in Pig. 4 on log-log scale for the p-version
(mesh 1,2), for the h-version with

40

I %G

304 
---.-

44

25 so 1O0 WO 400 0

N OF DEG EM OF FW£OO

Pigure 4Relative error in the energy norm vs degrees of freedom
(1) h-version, uniform mesh, (2) h-version, adaptively
constructed mesh, (3) p-version Mesh 1, (4) p-version
Mesh 2

adaptively constructed mesh and for the h-version with uniform
mesh. The polynomial degree of elements is also shown in the
figure. The shown slopes are the theoretical slopes of the
rate of convergence [Ij = 1/2 and 1/ ]. it is seen that the
observed rate of convergence closey agrees with (55)(57) •
Prom (54) we can compute C(N) for the p-version. The
results are given in Table 1.

Tables 2 and 3 show analogous results for the h-version. The
comparison between Tables 1-3 shows that for 5% accuracy we
need N = 1770 when using p-version Mesh 2, N = 2290 for
h-version with adaptively refined mesh and N 146000 for h-
version with uniform mesh.

I I II1/11 Ii i l i i i -I 1
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TABLE I

Relationship between 1elE,l and N for the

p-version, Mesh 2'Rli 1/2 1

p N ieE'R C(r0)/luOIE

1 35 32.6119 2.010
2 95 18.35-9 1.816
3 135 15.89g 1.997
4 239 13.24% 2.059
5 347 11 .06% 2.061
6 479 9.47% 2.079
7 635 8.27% 2.088

8 815 7.37% 2.099

TABLE 2

Relationship between PeiER and N for the h-version

with adaptively constructed mesh 1i =/2 J
N NeE,R  C(N)/

67 52.91% 2.035
101 26.38- 2.665
143 21.35% 2.562
221 16.79% 2.501
301 13.61% 2.366
617 9.63% 2.394

TABLE 3
Relationship between gelE R  and N for the h-

version with uniform mesh [P = 14]

N elE,R C(N)/UoE

51 36.02% .967

167 27.07% .974

591 19.81% .977

6. COMPUTATION OF THE STRESSES

The finite element method provides the solution UFE which
converges to the exact solution in the energy norm. We have
seen that the error measured in this norm decreases monoton-
ically and in a very orderly way. We now examine the pointwise
error an stresses for the h and p-versions. We denote the
error in the stress components as
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'" 10 1  ) [FE]
e (xl  2) (X1 x2  i (x1  2)

and the relative error by

4.

R eii(x 1 x2 )I
ei(x 4,x2) -_.. 1 2

where T TE] are respectively the stress compo-
hij and ij

nents corresponding to the exact and finite element solutions.
We will compute the stresses directly from the derivatives of
U;E and the stress-strain law. Fig. 5 shows the relative error

e ij in T.j at the point (.0,.1) computed by the p-version.

DEGREE p
I 2 3 4 5 6 78 9

100

a 10 a

LJ 32

10 25 50 100 20 400 800
NUMBER OF DEGREES OF FREEDOM

,.

DEGREE p

-2. 3.. 4-5 6 7

-I 234 67
., -., 10

3

b 1
LI

10 25 50 100 200 400 800

NUMBER OF DEGREES OF FREEDOM

Figure5
The relative error of e.j computed by the p-version
a) Mesh 1, b) Mesh 2. (1) 1R (2) e22 , (3) eR12

"%k" v ....''''...,'''' ,,&'', l, v "' v .' ,'.':,<,. .' ",,.., ',,.,, ..". "2.-2 .".-1". •".1."2".

' -L .,,%-.A , , , '.-'. '' L , ' - , ' , , ,,,.' -..'.w,.. - ,.'.. "...,
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Fig. 6 shows isometric drawings of the error in T22  for
various p values for meshes I and 2. The error values were
computed on a uniform grid with the grid points (ih,jh) h =
.1, i,j = - 10, 10. At points other than the grid points, the
values were computed by linear interpolation.

In the case of the h-version, the error is discontinuous at
the boundary of every element. Therefore we compute the
stresses in the center of every element where increased
accuracy can be expected.

In Pig. 7 we show the level-lines of the error in T22  (using

the mesh shown in Fig. 3) in the upper right quarter of the
domain D. The local maxima and minima are shown also in the
figure. The error is large in the neighborhood of the tip of
the crack. The level-lines and the local maxima and minima
depend on the interpolation technique used. We see in contrast
to the p-version that the oscillatory behaviour of the error
is not so strong here; nevertheless, it has to be emphasized
that when the stresses are computed everywhere directly from
the displacements, strong oscillatory behaviour will appear in
every element.

The center of the elements are changing with the mesh. To
show the convergence of the stresses, we selected for the Table
4 the center points which are closest to the tip of the crack
(in the first quarter of D). The table shows the error in %
and the magnitude of the exact values of the stress.

0 I .00

I+102
I-.065 +(.

... 00

'A. Figure 7

The level lines of the error e2 2  O 22 in te upper

quarter of D computed by the h-version

. 'IL
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TABLE 4
,5: The relative error of the stresses in the neighborhood of the

origin.

Coordinates le R I I eRIle 1E1 I

No. of
*elements N I2 J01 I I T101I IJ12 I

16 51 .25 .25 35.54% 19." 20.70%
5.037 3.751 1.553

43 143 .125 .125 33.95% 10.84% 15.14% .:
7.124 5.304 2.197 W

106 221 .3125(-1) .3125(-1) 31.01% 6.09% 12.35 '.
14.251 10.609 4.394 +-

319 617 .7125(-2) .7125(-2) 29.77% 2.40% 17.65% <
28.501 21.218 8.789

m 71i

16 51 .25 .25 35.54% 19.90% 20.70%
5.037 3.751 1.553 ,€

64 167 .125 .125 36.34% 20.0" 14.52% e
7.124 5.304 2.19 P

0

256 591 .625(-2) .625(-1) 34.46% 17.16%. 14.09% "
10.076 7.502 3.107 =

To depict the behaviour in a fixed point (.25, .25) we select
the center points closest to it. Table 5 shows the results.
If we desire to compute the stress components in the nodal
point (.25, .25) we have 4 values for disposition and also
their average. Table 6 we shows the relative errors. The
value in the lines 1, 2, 3, 4 are compuzed from the elements
ordered counterclockwise starting with the upper-right one.
The line A shows relative error of the average of the stress
values computed in the four elements.

In contrast to the monotonic and orderly behaviour of the error

measured in the energy norm, the accuracy in the stresses is
poor and nonmonotonic, although the stresses are converging in

integral sense (in the energy norm) monotonically. In
addition, the quality of the computed stress components is very

different.

*k qS, S -4 _-*~. .
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TABLE 5

The relative error of the stresses in the neighborhood of
(.25,.25).

Coordinates le 1R I leRI leRI

No. of [ol [0 R
elements N xI  x2  Ijr11  I022 1 le121

16 51 .25 .25 35.54% 19.90% 20.70%
5.037 3.751 1.553

43 143 .375 .375 1.09% 2.10 43.51% x
4.113 3.062 1.268 >

106 221 .1875 .1875 3.89% 8.26% 40.28%
5.817 4.331 1.794 .a

319 617 .21875 .21875 .464% .812% 12.12%
5.386 4.010 1.661

16 51 .25 .25 35.54% 1990% 20.70 .
5.037 3.751 1 .553

64 167 .373 .375 8.01% 7.79% 16.06%

4.113 3.062 1.268 0

256 591 .1875 .1875 10.20% 10.78% 6.45% "2
5.817 4.331 1.794 D

7. POSTPROCESSING

We have seen that stresses computed directly from finite
element solutions are not accurate. Nevertheless, often the
values of the stresses is the main aim of the computation.

We will show now that by utilizing the analytical structure of
the Navier-Lame equations it is possible to compute stresses
with the accuracy comparable to the accuracy of the energy of
the finite element solution (which is the square of the error
measured in the energy norm). We will outline the main idea.For more, see [81, (91, a]

Let xO = (Xo,1,Xo,2) E D and denote by S(xo,p) the disc of

radius centered in xO . Further, let D(Xo,p) = D
-S(xoP). See Pig. 8. The boundary of D(xoP) is denoted

by 3D(XOp) = an U r where r is the boundary of the disk

S(xo,p) . We now define the extraction (displacement) function

v(XoX) , (w1 ,w2 ) which corresponds to the functions , , in
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the sense of (3.2) (3.3) and are defined as follows

^f(z) = A(z - zo)-1+ ^*(z) (7.1)

TABLE 6

The relative error of the stresses in (.25.25)

%. No. ofRR
elements N eR R R% eIR2

A .034 1.60 33.95
1 .042 4.97 4.35

43 143 2 2.41 6.60 3.38
3 .026 1.76 72.22
4 3.09 3.14 64.41

Qi)
A 10.99 7.57 11.16
1 4.79 2.31 35.86

106 221 2 12.21 2.01 .093 >.,-I
3 17.27 17.42 106.43 4J

4 9.71 13.01 71.49

A 4.09 5.47 13.42
1 1.46 2.68 22.96

319 617 2 4.41 .099 55.69
3 4.41 13.43 3.88
4 6.07 11.74 28.85

A 12.12 10.65 17.36
1 19.37 15.35 13.36

64 167 2 6.75 8.68 5.47
3 5.87 5.94 68.41
4 17.51 12.63 60.22

A 8.11 10.13 12.66
1 8.10 6.62 13.38 0

- 256 591 2 5.38 5.05 8.15 "-4
3 8.12 13.64 38.71 .
4 10.84 15.84 33.48

t(z) = B(z-zo) -  + C*(z) (7.2)

^(z) = (z) - 1o2'(z) (7.3)

where *,(z) and 4,(z) are arbitrary holomorphic functions
on D (not only on D(xo,p)). Note that *, * are
holomorphic on A(xO,p) for any 0 < p.

Although the domain D(xop) is doubly connected, the
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displacement function w defined by (7.1) through (7.3) by
(3.2) is a single valued function and it is an admissible
displacement function.

Denote by T[u]', TB'wJ the stress tensors associated with the

Fig 8.TedminDxp)

dipaeetfncin n . eoeteo-wr omlt

30..'P by g. Th .BThel doai cn De rite ite)or

f3D(x 0,p) (u,TIWJ.n)ds f 3D(x0,P) (w,T[UJ.n)ds (74

This equation can be rewritten

f [(u,TLWJ.n) - (w,TLuJ.n)]Ids
aD-

(7.5)

= f [-(u,T[wiJfl) + (w,T[ui-n)]ds
r

The functions f, 4'associated to the solution can be
written in the neighborhood of z0:

=~z a0 + a1 (z-z0 ) + O((z-z0 )2 ) (7.6)
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~(z =bo + bl(Z-Z0 ) + O((z-z0 )2 ) (7-7)

*(z) = E(z - io' -(7.8)

Using (7.1)-(7.3) and (7.6)-.(7.8) in (7.5) and letting p 0

we get

f (u,T1WVbn)ds - f (W,T[uI.n)ds

3D 3D

- -[b (icA + A) + S K + 1) + a (l+ic)B + a (1+ic)tj. (7.9)

By application of (3.4)-(3.6) we get

T 1x)=Re(a 1 + a 1 - h 1 ) (.0

T2 x = Re(a, + a1 + b1 ) (7.11)

4 T 1 2 (L[0 ) = Im b . (7.12)

By proper selection of A, B we can obtain that the right
hand side of (7.9) be Tjj Note that any choice of

Sand E* in (7.1) and (7.2) does not change the right hand
side of (7.9).

In our problem when the tractions are prescribed at 3D, the

function g(x) = T *ln is given. (7.9) can therefore be

written in the form

F = f (Li0 ,T[WJen)ds - f (w,g)ds (7.13)
9D 3D

where F is (for proper choice of A, B) the exact value of the
stress component at x = x .Of course uro is not known but
up-E is. Therefore we defin~e

P FE f (j!FE,TJw],n)ds - f(w,'g)da 7-4

3D 3D

By subtracting (7.13) (7.14), the error in the extracted
functional PyE (provided that integrals are evaluated

P - ?E =f (1O - !j,Twn)ds. (7.15)
3D
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Let us analyze now (7.15). To 'his end, let v = (vI ,v2 ) be

the (exact) solution of the problem when tractions T~wl-n are
prescribed at 3D. y O because V is singular at x = x0,

but v is not. Existence of v is guaranteed because T[w]-n
satisfy the equilibrium conditi~n. We can write

j (O - upE),T .n)ds = 2W(u 0 - u.,v) (7.16)
3D

where W(u,v) is the usual energy scalar product associated
with W(u) defined in (3.1). Using one of the basic property
of the finite element method, namely

(M- upEIPE) = O, (7.17)

we obtain from (7.15) (7.16)

F - PE = 2W(_u0 - MPE' Y - YpE)

and hence

IF-FEI - 2U1o-1u pEnnv- EnE (7.18)

So far we did not discuss the choice of ^.(z) and j.(z).
(7.18) shows that N. and ., should be selected so that
IV - VpEI is at least of the order of mu0 - uFE.
If IV - VFEIE m Clu - uEIE  we get IF - PFEI

Clu 0 - UE2 C(W(uO ) - W(u )) and the rate of convergence

is twice that of the rate of the error measured in the energy
norm. Note that inequality (7.18) is upper bound which
neglects possible cancellation in the energy integral.

8. SELECTION OF THE EXTRACTION FUNCTION

When xO  is not close to the boundary of D, then we can

select 0 = = 0. When x0  is close to 3D, then

*N and should be selected so that T[w].n = 0 on that
part of the boundary which is close to xO . Otherwise, we
would not achieve that Iv - vFEIE will be small.

In the following we outline briefly the procedure for

constructing ;. and 4 so that T[wl.n = 0 on the crack
surfaces. To simplify the notation we will write * instead

of *, etc.

Define an auxiliary function a(z) on D



19

a(z) = i(z) + zi'(z) + i(z) (8.1)

Using (3.4) and (3.5) the tractions on the crack surface can be
written as follows

t22 (z + ) - i (z + ) = *(z+) + O(z) (8.2a)

22(z _ - t 12(Z- ) = #(z_) + n(z+) (8.2b)

where z+ and z_ respectively denote the upper and lower
surface of the crack. Using (7.1)-(7.3) we get

Q(Z) = - z-i 0 )-2+2X( z-z 0 )( z-i 0 )-3_( z_ 0 )-2+g.(z) (8.3)

where

Q.(z) = i.(z) + z1(z) + ;.(z). (8.4)

Setting

Q.(z) = *.(z) (8.5)

we obtain

T22+ - ir 1 2 (z + ) = Q(z+) + #.(z+) + #.(z_) (8.6a)

where

Q(z) -A(z-z+ - 0 -2

(8.7)

+ 2X(z - Z)(z - 0) -0 - (z -0 )

Note that Q(z+) = Q(z_). Similarly

T2 2 (Z) - ir 1 2 (z_) = Q(z.+) + $.(z) + #.(z+). (8.6b)

Now we select ** so that

+ +*(z) = -Q(z+). (8.8)

(8.5) and (8.8) define now *, and *,. By this selection we
achieve that T22(z+) = T12(z+ = T22(z) = 12 (z+ ) = 0. The

relation (8.8) can be easily achieved. For example, for

-'."
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- 12/2 - 16

112 )2

we get

O(z+) + (z ) 1
(-z+ + ZO)

which is one term in (9.7). Consequently we get the other
terms and combining them (8.8) is achieved.

9. NUMERICAL PERFORMANCE OF THE EXTRACTION TECHNIQUE

We now present the results of computational experiments based
on our model problem and the extraction function described in
Section 8 (using A*, Z*)

Fig. 9. shows the results analogous to those shown in Fig. 5
but stress components Ti was computed by the extraction
technique. The slope shon in the figure shows the rate p = I
(i.e., the rate of the convergence of the energy and not the

energy norm). For comparison the error eR2  for mesh 2

computed directly (see Fig. 5b) is shown also in Fig. 9. Fig.
10 shows the isometric drawings (in the same scale as in

I

10

10 25 50 100 200 400 8O

NUMBER OF DEGREES OF FREEDOM

Figure 9
The relative error of T ci omputed by postprocessing of the

p-version for Mesh 1 and Mesh 2. (1) R0l, (2) e2 (3)e"
229 12
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Fig. 6) of the error in T22 computed by the postprocessing
technique.

Table 7 shows the relative error eR. in the stresses Tij at
the point (.25,.25) computed by the ostprocessing technique
taking . = &* = 0 (because the point is not close to the
boundary). This data should be compared with the results of
Table 5 and 6.

TABLE 7

The relative error eRj in the stresses Tij at the point
(.25,.25) computed by postprocessing.

'No. of
eleentRs N eR eR

elmns Ne11 e22 e12

16 51 20.91% 22.51% 12.70%
43 143 11.40% 13.07% 8.29% *;1
106 221 4.60% 5.92% 3.74% "
319 617 1.47% 2.01% 1.31%

16 51 20.91% 22.51% 12.70%
64 167 12.51% 14.88% 9.86%

256 591 6.87% 8.9D% 6.28%

We see that for adaptive meshes the error is of order N-1  and

for uniform meshes of order N J/2. Similarly, as in the case of
the p-version we see an orderly convergence with the rate as
the square of the error measured in the energy norm (as
theoretically expected).

10. CONCLUSIONS

The shown computations are characteristic in the following
way. The convergence in the energy norm is monotonic and very
orderly. For the smooth solution the p-version is especially
effective. For unsmooth solutions the refinement of the meshes
in the h-version is very essential.

The convergence of stresses in a fixed point is very "chaotic,"
the accuracy in various components can be very different. The
rate of convergence of the postprocessed values are as the
square of the error measured in the energy norm. In the case
of the h-version, uniform (or piecewise uniform) meshes and
smooth solution the muperoonvergenoe occurs in the center of

the elements. The rate is h2 log h i.e., effectively as the
square of the error in energy norm jh). Therefore, the gain
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for the elements of degree 1 is not in the rate of
convergence of the postprocessed value but is in the
magnitude. (For p '> 1 the gain of the postprocessing appears
also in the rate.)

-. The postprocessing is especially important for the p-version,
although it is also essential for the h-version especially for
unsmooth solutions and for general meshes.

11. EFFECTIVITY OF THE POSTPROCESSING TECHNIQUE

In the introduction we raised a number of questions concerning
the postprocessing. We now briefly address these question in
the light of our results. Detailed analysis will be made in a
forthcoming paper.

1) It is cost effective not to save computational effort
on a postprocessing procedure especially when not an excessive
number of extractions is made. The cost of obtaining reliable
and accurate values by postprocessing is much smaller than to
obtain comparable accuracy by increasing p in the p-version
or refine the meshes in the h-version. The postprocessing
usually removes very reliably the "chaotic" behaviour of the
errors in stresses. The effectivity of the postprocessing is
characterized by higher rate of convergence than in the energy
norm.•4:

2) The rate of convergence as the square of the rate of
the error in the energy norm is theoretically the maximal one
which can be directly extracted. The postprocessing technique
we outlined leads to this rate.

3) Developoment and implementation of the postprocessing
techniques in finite element programs is practically not a very
simple task. We mention some aspects:

a) A number of extraction functions must be
developed. Although many analytical solutions of special
problems are very helpful for such development, the
general approach especially for nonhomogeneous material

. still needs further research.

b) Special care must be excercised in the numerical
4 evaluation of integrals because the extraction function

can have singular character.

c) The postprocessing technique for nonlinear
problems could be especially important but additional

research is necessary.
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